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Inductance and Resistance Computations for Three-

Dimensional Multiconductor Interconnection

Structures
Ruey-Beei Wu, Chien-Nan Kuo, and Kwei K. Chang

Abstract—A computer-aided analysis system has been estab-
lished to calculate the equivalent inductance and resistance
matrices for three-dimensional multiconductor interconnection
structures. Based on the theory of partial element equivalent
circuit, the interconnection structures are first decomposed into
many straight segments which are of circular or rectangular

cross sections but can be in arbitrary orientation. The resis-
tances and partial inductances between all these segments are

calculated using analytical integration and quadrature formu-
lae. They are finally assembled into the desired equivalent

impedance matrix by general network theory. Illustrative ex-

amples include the analysis for non-uniformly coupled trans-

mission lines and the calculation for skin-effect impedances of

transmission lines and three-dimensional structures. The nu-
merical results are in good agreement with the measurement
data and the available results in the literature.

I. INTRODUCTION

w ITH today’s level of complexity in integrated tech-

nology, the consideration of computer package is

as important as the circuit design [1]. As the switching of

circuits becomes very fast, the interconnections can no

longer be considered as ideal short lines but instead, cir-

cuit elements with resistances, capacitances and induc-

tances [2]. The resultant signal delay, reflection, cross-

talk, and distortion may degrade the system performance.

The characterization of electrical parameters and the anal-

ysis of electrical properties for such interconnection struc-

tures become fundamental to system synthesis and opti-

mization. To accurately determine the electrical

parameters of the three-dimensional packaging structures,

a capacitance analysis program had been developed [3],

[4]. The present paper is devoted to the evaluation of

equivalent inductances and resistances for arbitrary three-

dimensional multiconductor interconnection structures.

The inductance plays a very important role in the elec-

trical engineering applications. The computation formu-

lae for basic structures such as straight filaments and coils
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have been extensively presented [5] (and the references

therein). However, c@e to the complexity of geometry,

the inductance (computations for interconnection systems

are usually hard to access by analytical method or direct

integration. Ruchli et al. thus proposed a general and sys-

tematic method of partial element equivalent circuit

(PEEC) to deal with this problem [6], [7]: They decom-

posed the interconnection system into a lot of parallel or

orthogonal straight segments for the calculation of partial

inductances andl from which, extracted the desired equiv-

alent inductances. Later, based on a similar idea, Kami-

kawai et al. considered the three-dimensional inductance

of finite-length transmission lines [8]. The present paper

generalizes the PEEC method by allowing the modeling

of inclined andl arbitrarily oriented line segments. The

evaluation of p;mtial inductances and resistances and the

extraction of equivalent impedances for this more general

analysis are discussed here. Also, several illustrative ex-

amples are presented to verify and demonstrate some

novel

To

applicaticms of the method.

II. PEEC METHOD

begin with, consider a general N-loop system as

shown in Fig. 1. Under the assumption of uniform current

distribution across the cross sections of the conductors,

the mutual inductance between loops i and j can be given

by [6]

Here, p = 4n nH /cm is the permeability of the free

space, ri, denotes the distance between two points in the
two conductors, while the integration is taken over the

cross sectional areas da, and da] and along the current flow

directions d~ and d; of conductors i. and ,j, respectively.

The self inductance can be found from (1) by letting i =

j.
In fact, the application of (1) is very limited since the

numerical evaluation for the multiple integral requires tre-

mendous computation time. A better approach is to de-

compose the loops into straight segments, say that the

loops i and j are divided into K and M elements, respec-
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Fig. 1. An N-loop interconnection stmcture andltsequlvalent clrcult.

tively. Between every two segments,

to define the partial inductance [6]

it is advantageous For rectangular segments, let the length be 1 and the

widths of two sides be W and T, respectively. Defining

,. the normalized widths w = W/l, t = T/l, and the nor-

L m,,, ‘&c la, !.,,, L K’d’kl.k.d’’ndada ‘2’

where bk, ck and bm, c., denote the two ends of the kth and

mth segments, respectively. Then, the loop integrals (1)

can be restored from the assembly of these partial induc-

tances, i.e.,

(3)

where the sign Sk,,l is -1-1 or – 1 depending on whether the

loop currents in the two segments are in similar or in re-

verse directions. If the two segments are orthogonal to

each other, the partial mutual inductance Lpk,,,is zero.

III. EVALUATION OF PARTIAL INDUCTANCES

A. Partial Self Inductances

In the evaluation of partial inductances, we must com-

pute the self inductance for each segment and the mutual

inductance between any two segments. The self induc-

tance depends on the segment length and the cross sec-

tional shape. Most of the practical structures can be de-

composed into straight segments which are of circular or
rectangular cross section. For circular segments with

length 1 and radius p, the self inductance can be found by

[9]-

-J+g+;]. (4)

realized distances

r=d~, aw,==, at= m,

a, = dw2 + tz + 1,

the self inductance given in (2) can be written as [6]

:=3:[%)‘%3
‘+[~s(tat(rlcq.)) +

‘%(.::%))‘:
Ww%(:+%))
(

~2

s
wr(aW + a,) )

‘+SLL%))‘+4W(CSJ1

-MT(:)‘:T(:)‘:T(ii)l
1

[

(a, + r + f + af)t2——
60 (a, + r) (r + t) (t + ar) (a, + e+)

(ar + r + w + cq,)w2

+ (a, + r) (r + w) (w + a.) (a. + c+.)

(CYr + a., + 1 + 0!, )
+

(a, + a,,) (a!w + 1)(1 + a,) (at + cl,) 1
[11 1 1— —---+ +

%r+ar CYw+ O!r at + clr11
where

S(x) = sinh-’ (x) = in (x + JK7)

(5)
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and T(x) = tan-i (x)denote thearchyperbolic sine and

arc tangent functions, respectively. At the filament ap-

proximation (T, W << l), thelengthly expression can be

replaced bytheempirical formula [5, p. 21]

L

[
p in

21
.~—
1 21r 0.2235 0 (W + T) 1–1. (6)

B. Partial Mutual Inductances

On the other hand, the partial mutual inductance de-

pends mainly on the relative geometrical position and the

lengths of the two segments and only slightly on the cross

sectional shapes. Hence, to a first order approximation,

we may calculate the filament inductances by assuming

that the cross sectional sizes of the two segments are much

smaller than the segment lengths and the distance. Under

this filament approximation, arbitrary two segments in the

three-dimensional space can be categorized into three

classes: parallel, coplanar inclined, and more general, in-

clined in different planes. The analytical formulae of the

filament mutual inductances for all these cases are avail-

able in the literature [5, ch. 6, 7].

The accuracy of the filament approximation depends

much on the ratio of cross sectional size to segment dis-

tance. Consider two parallel segments of the same width

W, thickness T, length 1, and center-to-center distance ~.

After a tedious algebraic manipulation by applying the

laws of summation of inductance [5, ch. 6], it is verified

that the mutual inductance for this case can be given an-

alytically by

()D1
+ (L~+~ – L~-~) “ + ~(L~+~ + L~-~)

T

(7)

where the self inductances in RHS of (7) are calculated

by (5) with the subscript denoting the thickness of the

segment, whose width is W and length is 1. Given the

exact formula (7), the relative error of the filament ap-

proximation versus the ratio W/D for the case T/W = 1

are shown by the solid curves in Fig. 2 with the arrow

denoting the decrease of parameter D/l = 3, 1, .3 and

.1, accordingly. Roughly speaking, the error of filament

approximation is proportional to the square of the W/D

ratio. To assure the relative error within 1%, 0.1 %, and

0.01 % for various D/l, the W/D ratio must be smaller

than 0.35, 0.11, 0.035, respectively. In common cases,

the W/D ratio is larger than 0.035 such that the relative

error is larger than 0.01 %. To improve the accuracy, we

may choose several filaments and find their weighted av-

erage by suitable quadrature formulae.

Since the cross sections of interest are circular or rec-

tangular, only the following three combinations as shown

in Fig. 3 need to be considered. For the first combination

10-’
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Fig. 2. Relative errors of calculated partial mutual inductance versus the

W/D ratio. The sold and dashed curves denote the results obtained by
filament and quadral.ure formula, respectively. The arrows indicate the de-

crease of the parameter D/l = 3, 1, 0.3, and 0.1 accordingly.

(a) (b) (c)

Fig. 3. Quadrature formulae for the mutual inductance between two seg-

ments that (a) both are rectangular, (b) one is circular and the other is
rectangular, and (c) both are circular.

that both segments are rectangular, we choose five fila-

ments as shown in Fig. 3(a) at each of the cross section.

The mutual inductance can be found by the Rayleigh

quadrature formula [5, p. 11]

MG~(Mpf +Mm+Mp3+MP4+MQ5

+ A4Q6 + MQ7 + ~Q8 –2” MPQ). (8)

where Mpl is tlhe inductance between filaments P and 1,

MQ~ is the inductance between filaments Q and 5, etc. T$e

accuracy can be greatly improved by the quadrature for-

mulae. For example, consider the aforementioned struc-

ture and calculate the mutual inductances by the quadra-

ture formulae. As shown by the dashed curves in Fig. 2,

the relative error is now proportional to the fourth power

of the W/D ratio. Hence, to assure the relative error with

0.01 % requires that the W/D ratio is smaller than 0.21,

which is usually the case for practical structures.

To keep a similar accuracy, suitable quadrature for-

mulae are required for the other two combinations in Fig.

3. For the combination shown in Fig. 3(b) that one is cir-
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cular and the other is rectangular, the quadrature formula

becomes

M=:(MP, +Mp2+Mp~ +MP4+2” MPQ). (9)

For the third combination shown in Fig. 3(c) that both

segments are circular, the filament inductance &fpQ be-

tween the two center points P and Q is just enough for the

desired mutual inductance A4. Usually, the results “by the

above quadrature formulae are much more accurate than

the filament approximation.

IV. EVALUATION OF PARTIAL RESISTANCES

The resistance calculations can be treated by the PEEC

approach, of course much more simply. Since there is no

mutual resistance between two conductor segments, only

the partial resistance Rp of each segment need be consid-

ered. For a straight segment, the resistance can be found

easily by

Rp = l/(u “ A,ff) (lo)

where u is the conductivity, 1 is the segment length, and

A,f is the effective cross sectional area.

At high frequencies, the current may crowd into the

portions near the surface of the segment, the so-called skin

effect. As a result, the effective area in (10) decreases such

that the resistance suffers from a dramatic increase. To

account for this effect, the current density J(7) is assumed

exponentially decaying along the radial direction of the

cross section [10]. By neglecting the nonuniformity of the

current along the periphery of conductor surface, or the

so-called proximity effect [11], the effective area in (10)

is then approximated by the formula

ii

2

IJJ
2

J(7)da ~–(1 + j), (,) da

A,ff = ~—

H U

(11)

IJ(?)12 da e ‘2, (.!) da

where ~(s) = d(s) /ti is the radial distance measured from

the surface normalized to the skin depth 6 = 1/ =f.
At verj low frequencies, the skin depth 6 is much larger

than d(s) such that (11 ) can be reduced to the actual area.

Equations (10) and (11) can then be employed to eval-

uate the partial self resistances of the basic segments. For

circular segments, the distance function d(s) = p – s and

the incremental area da = 27rs ds. Hence, the effective

area is given by

~_pe-Ye’
A.ff = 27rp8 “

1[

~_l–e-2e

2e 1
(12)

‘ye

orAefs Tp2 “ (1 – ez/9)ife << 1, where~ = 1 +j

and ~ = p/6. For rectangular segments, we choose T the

length of the shorter side and model that d(s) = T/2 – s

and da = 2 . [2s + (W – T + 2s)] ds. Then, the effective

area in (10) can be given by

Aeff = 2(JV + T) 6

I 1 – a _..
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2CY 1 – e-vl~ /
“l–— –Ye ___

l+ a-e l+a! ye [/

[

l–cl c1–2E
. * _e-2E

1–—”
l+CY e l+CY 1

(13)
E

or

A.ff s WTO [1 – ez . (3 – a2)/18] ife << 1,

where

y=l+j, cY= T/W and c= T/2d.

V. EQUIVALENT IMPEDANCE MATRIX

It is difficult to apply (3) directly to calculate the in-

ductances in common packaging structures, where the

complexity usually allows no simple loops to be identi-

fied. Nonetheless, the equivalent impedances between any

two interconnection nodes of interest can be extracted

from the partial inductances and resistances by applying

the general network theorem. Let [V~ ] and [Zb] denote the

vectors consisting of the voltage drops and the currents,

respectively, along all the conductor segments, or the so-

called branches. Then, they can be related ins domain by

[Vbl = ([Rpl + SILPI) “ [z,] = [Zpl “ [z,] (14)

where the diagonal matrix [RP ] is made of the partial re-

sistances while the matrix [LP ] is made of the partial in-

ductances.

All the nodes in the interconnection system can be ca-

tegorized into several groups, among each of which the

nodes can be linked physically. Choosing one node as the

voltage reference among each group, we can define for

each node the nodal voltage Vn and the net current Z. flow-

ing into the node. According to the well-known Kirch-

hoffs current law (KCL) and voltage law (KVL), the no-

dal voltages and currents can be related to the branch

voltages and currents by

[A] . [Zb] = [Zn] and [A]T . [V,l] = [Vb]. (15)

Here, [A] is the so-called incidence matrix of the partial

circuit, which in the convention is such that A,b = 1 and

Aj~ = – 1 when the current in branch b flows from node

i toj. The superscript T denotes the matrix transpose. Note

that the group references are excluded from the node list

in the incidence matrix.

Substituting (15) into (14), it can be shown that the no-

dal voltages and currents satisfy the relation

[Zn] = ([A] “[2P]-’ . [A]T) . [V,l]. (16)

Usually, only few of the nodes are chosen as the output

terminals. For all other internal nodes, the net nodal cur-

rents are zero. By a similar derivation, it can be shown

that the voltages and currents of the output terminals, [V. ]
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and [Zo], satisfy

[V()] = [Z.ql “ [z(,)];

[Zcq]=[B]T” ([A] - [2P]-’ . [A]T)-’ “[B] (17)

given the incidence matrix B of the output equivalent cir-

cuit. Here, [Zeq] is the desired equivalent impedance ma-

trix between the output terminals.

In the computation of equivalent impedance matrix, the

inner loop in the parenthesis of (17) calls for a matrix

inversion and two matrix multiplications. It is noted that

the resultant matrix [X] from the multiplication of ma-

trices [Zp ] -‘ and [A] T can be obtained more directly by

solving the matrix equation

‘ [Zp] o [X] = [A]T. (18)

Then, the computation for the inner loop [X’ ] = [A] “
[Zp ] -‘ c [A]T calls for a matrix equation solution and a

matrix multiplication only. Similar approach can be ap-

plied to simplify the computation for the outer loop op-

eration [B]~ s [X’]- 1 “ [B].

Since there is no mutual inductance between two or-

thogonal segments as given by (2), the matrix [Zp ] usu-

ally consists of many zero off-diagonal elements. Suitably

renumbering the segments, all the nonzero elements can

be flocked to the positions near the matrix diagonal. For

practical interconnection structures, all the segments are

categorized into five kinds, i.e., Z, X, Y, S, and G lines

according to their direction of current flow. The X, Y, and

Z lines are parallel to the x, y, and z axes, while the S and

G lines stand for the inclined lines parallel to the x-y plane

and the general three-dimensional lines, respectively.

Then, only the mutual inductance between two segments

in the following eleven combinations need be considered.

They are Z-Z, X-X, Y-Y, which belong to parallel seg-

ments, X-S, Y-S, S-S, which are coplanar inclined, and

Z-G, X-G, Y-G, S-G, G-G, which are inclined in different

planes. To take advantage of the sparsity in [2P], the Z

lines are numbered first and then X, S, Y, and G lines

accordingly. The matrix elements are stored in the skyline

representation, while the matrix equation in (18) is solved

efficiently by the LU-factorization [12]. Both the com-

puter memory and computation time are thus reduced sub-

stantially.

VI. NUMERICAL RESULTS

Based on the PEEC approach, a computer-aided anal-

ysis system has been tailored on IBM/PC to calculate the

inductances and resistances for arbitrary three-dimen-

sional interconnection structures. Also, a graphic input

interface is set up to facilitate the specification and veri-

fication of the structure geometry. The output equivalent

impedances are stored according to the convention of

SPICE and are ready for next-step circuit simulation and

analysis. In its present version, the program can deal with

up to about 120 conductor segments in less than one min-

ute on a PC/AT-386 with the 387 coprocessor. Of course,

the program can be ported to larger computers for the

analysis of complicated structures with more conductor

segements.

To check the validity of the present approach, the first

example considers a structure formed by multiple con-

nected loops shown in Fig. 4(a), which is made of circular

cooper wire having radius 0.5 mm. The loop impedance

is measured by the RLC meter in the frequency range 20

kHz to 10 MHz. Due to the presence of the branches, no

simple loop can be identified to apply the traditional in-

ductance formula (1). The PEEC approach becomes

unique here since it can handle arbitrary interconnections.

The calculated resistance and inductance are shown by

solid and dashed curves in Fig. 4(b), respectively. The

triangular marks denoting the experimental data are also

shown in the fig,ure for comparison.

It is noted that the calculated inductance slightly de-

creases from its low frequency limit to its high frequency

limit. There is good agreement between the calculated and

measured inductances, with less than 7 % deviation. In

this case, the nonuniform current distribution due to the

skin effect has a negligible influence on the inductance,

since the cross sectional size of the conductors is small

compared with the distance between conductors. On the

other hand, the resistance increases significantly versus

the frequency due to the skin effect. The comparison be-

tween the calculated and measured resistances is reason-

able at low or middle frequencies, but worse at higher

frequencies. The discrepancy may be contributed to the

fact that the reactance CJL becomes much larger than the

resistance R at high frequencies, which makes the mea-

sured resistance less reliable.

When the conductors are very close to each other, the

inductance may vary quite a bit with the frequency due to

both the skin and proximity effects at high frequencies

[1 1], [13]. The assumption of uniform current distribution
will result in a noticeable error in the calculation induc-

tance. Nonetheless, the present approach can deal with

the effects by further dividing the cross section of the con-

ductor segment into small cells [11]. Inside each cell, the

current distribution is assumed uniform with an unknown

constant. These constants may be different from cell to

cell and will be solved by applying the aforementioned

general network theorem. Good results will be achieved

by this modeling technique if the size of the cells, espe-

cially those near the periphery of the conductor, is kept

smaller than the skin depth at the desired frequency.

For example, consider a transmission line formed by

two rectangular conductors of size 2a x 2b and center-

to-center distance 2c. The triangular and square marks in

Fig. 5 show the calculated results for the case that a = 1,

b= 0,1, c= O.5mmanda=b= l,c=2mm, re-

spectively. The solid and dashed curves are obtained by

a two-dimensional boundary integration equation analysis

[13]. It is found that the present results are satisfactory in

the low or middle frequency range. At a high frequency

say ~ = 10 MHz, the skin depth 6 s 0.021 mm becomes

much smaller than the cross section such that each con-

ductor should be divided into hundreds of cells to achieve
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Fig.4. Equivalent Impedance versus frequency for a complicated loop.
The solid and dashed curves denote the calculated resistance and induc-

tance, respectively. Thetriangular marks are experimental data.

satisfactory results. The number of unknowns increases

dramatically and the numerical computation becomes too

time-consuming.

The next example considers two coupled transmission

lines over a ground plane as shown in Fig. 6(a). When

the center-to-center distances dl and d2 at the two ends

are different, the coupling is non-uniform. As far as the
high-frequency inductances are concerned, we need only

modeI the current distribution along the conductor sur-

face. In the following analysis, each transmission line is

further divided into 16 segments along the periphery of

cross section, three along each narrow side and five along

each wide side. On the other hand, based on the image

theory, the presence of ground plane is modeled by in-
cluding two image conductors under the ground plane as

shown in Fig. 6(b). The program calculates the two loop

inductances L for a given length 1 and the mutual induc-

tance M in between. At the limit that 1 tends to infinity,

the inductance matrix of the coupled transmission line
system can be given by Lll = LZZ = ~L/1 and L12 = L21

= @f/1, while the inductive coupling coefficients is kL =

M/L.

Table 1 lists the numerical results versus various lengths

1 for three cases with uniform distanced = dl = d2 = 12,

18, and 24, respectively, and one nonuniform case with

R/Rd. L(nH)

‘oom’oo

10

1

600

400

200

102 103 104 105 106 107

Frequency (Hz)

Fig. 5. Skin effect resistance and inductance for a transmission line formed
by two rectangular conductors. The hollow square and triangular marks

denote the calculated resistance and inductance, respectively, for the case
that a = b = 1, c = 2 mm. Similarly, the solid marks are for the cae that
~ = 1, b = 0,1, ~ = ().5 mm, They are comparedWith the two solid and

dashed curves obtained by a boundary integral equation analysis [13].

6/

(a)

---

(b)

Fig. 6. Inductance calculations for nonuniformly coupled transmission
lores. (a) original structure, and (b) equivalent stmcture by image theory.
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TABLE I
INDUCTANCE MATRIX FOR THE COUPLED TRANSMISSION LINES SHOWN IN FIG.6

d,=d2 =12 d,=d, =18 d,=d2 =24 d, = 12, d, = 24

(;il) ;L/1 ;M/1 ;L/1 ~M/1 ;M/1;L/1 \M/1;L/[

20 2.971 .4537 2.988 .1895 2.990 .0936 3.201 .1879

50 3.429 .6470 3.454 .3018 3.458 .1630 3.490 .3234

100 3.610 .7370 3.639 .3615 3.643 .2049 3.647 .3911
200 3.707 .7877 3.737 .3965 3.742 .2312 3.737 .4301
500 3.766 .8200 3.797 .4200 3.803 .2488 3.796 .4553

1000 3.786 .8311 3.818 .4280 3.823 .2500 3.816 .4639
2000 3.797 .8369 3.828 .4320 3.834 .2581 3.826 .4683
5000 3.803 .8400 3.835 .4345 3.840 .2601 3.833 .4709

co 3.803 .8417 3.834 .4357 3.840 .2611

The unit is nH/cm.

d, = 12 and d2 = 24. It is found that the per unit-length

inductances increase, and so is coupling coefficient, ver-

sus the length 1and finally approach a constant value. The

coupling coefficient k~ in the non-uniform case (d, = 12,

d2 = 24) lies somewhat between those in the two uniform

cases with d = 12 and 24, respectively. To the first order

aproximation, the value is close to kL in the unifom case

withal = (d, + d2)/2 = 18.

Conventionally, the inductance matrix for ideal uni-

formly coupled transmission lines system is obtained from

the inverse of its two-dimensional ‘capacitance matrix in

homogeneous environment [14]. Here, the results based

on the conventional approach are listed in the last row

marked by 1 = m. It is verified that the conventional ap-

proach ,can give satisfactory inductances in the two-di-

mensional limit. However, the present three-dimensional

inductance analysis is inevitable in investigating practical

transmission lines with finite length or nonuniform cou-

pling.

The last example illustrates the inductance modeling of

multilayer ceramic (MLC) structures used for multichip

packaging in a high-performance computer system [15].

Consider a simplified off-chip interconnection path be-

tween the driver and receiver as shown in Fig. 7(a). The

output terminals C and E are used as the dual power sup-

ply in bipolar circuits, R as the signal reference, and S as

the signal. When the switching signal propagates from S1

to S2, the package inductance causes a AZ noise between

the power supply terminals of the driver, which then

propagates down to the receiver [16]. It is thus of concern

to find the equivalent inductances shown in Fig. 7(b) be-

tween these output terminals of the package. However, Fim ‘

C, T, R,% S, C, T, R,
Ann’A’ t+-n- A-n-

tfllf=-ii;‘ii
Illl$i

!==i!i!Rg
)- x Unit: mm

Y (a)

f- .- —
e

——.—— —— ;

/1 C2 T1 T2 R, R2 .S1

1- ----- A

(b)

the package structure contains so many branches that the
.,5. 7. Inductance modeling of a simplified multi-layer structure. (a)

Orij!inal structure. (b) Equivalent circuit.
current loops can hardly be defined. Furthermore, the cur-

rent loops are incomplete until the devices are connected

to the output nodes. Nonetheless, the PEEC method gives

an equivalent inductance matrix between all the output
nodes, as listed in Table II. After including the device

models of the chips and the signal connection, the equiv-

alent inductance matrix can be put into the circuit simu-

lation for the detailed noise analysis.

For example, the current during the switching can be

assumed to flow from Cl to SI, via the signal line to S2,
shorted to T2, then via the package and a large capacitance

between Tg and cg, and again via the package back to C{.

In ac operation, the large capacitance between Tg and C~

can be simply modeled by an electrically short. Hence,

the effective inductance of the package to this current flow
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TABLE II
EQUIVALENT INDUCTANCE MATRIX FOR THE MULTILAYER STRUCTURE IN FIG. 7

c, – C,q C2 – C,q T, – ?, Tp – T, R, –R, R, – R,q s, –s,

c, – c, 13.594 7.421 9.124 4.309 7.513 3.207 2.790

c, – c, (.619) 10.584 4.312 6.277 3.512 4.445 –1.773

T, – T, (.677) (.362) 13.380 6.515 8.846 3.801 3.671

T, – TX (.367) (.606) ( 559) 10 142 4.068 5.657 –1.486

RI –R, (.496) (.263) (.589) (.311) 16.870 3.396 4.096

Rz – R,q (.263) (.414) (.315) (.538) (.250) 10.910 –1 060

s, – s, (.203) (-.146) (.269) (-.125) (,z67) ( - .086) 13.930

The unit of inductance is nH The numbers in the parenthesis denote the mutual inductance coefficients.

will be

L,ff = Lc, - q + Ls, - sz + LT2 -T, – 2Mc, - C,, SI - Sz

– z~C[ – Cg, Tz - T1+ Z%( – s2, T? – Tg s 20.5 nH.

In other words, when the current switching rate if AI/At

= 10 mA/ns, the total A 1 noise between Cl and S1 will

be 205 mV. Among them,

AVC, = (–Lc, _cg + Mcl-cg, ~l-s2

+ ‘Cl - CR, T2- Tg) “ AI/At

= – 65 tnV

will present at the chip pad Cl with respect to the refer-

ence C8. Similarly, the noise voltages will be –29.2,

10.6, 43.5, 6.5, 13.9, and 140 mV at the chip pads C2,

T,, T2, R,, Rz, and S,, respectively.

VII. CONCLUSION AND DISCUSSION

A general inductance and resistance analysis system has

been set up to deal with arbitrary three-dimensional inter-

connection structures. The calculated results are in good

agreement with the measured data and the available re-

sults in the literature. The system is very useful if only

the structure of interest is small in size compared with the

wavelength at, the operating frequency. Several novel ap-

plications are also exploited in this paper, such as the in-

vestigation of the inductive coupling between two non-

uniformly coupled transmission lines and the evaluation

of the AZ noise in a multi-layer computer packaging struc-

ture.

The most fundamental assumption in the present ap-

proach is the uniform current distribution inside the cross

section of each conductor segment in the inductance com-
putation. It is found that the calculated results are satis-
factory for most practical structures where the cross sec-

tional size of the conductor is much smaller than the

distance between them. Only under the cases that the con-

ductors are very close to each other and the frequency is

high, this assumption may result in noticeable error. Even

so, this difficulty can be alleviated somewhat by dividing

the cross section into smaller cells. Of course, the number

of unknowns may increase dramatically at high frequen-

cies such that the numerical computation becomes very

time-consuming.
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